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Kolmogorov’s equation, which relates second- and third-order moments of the velocity
increment, provides a simple method for estimating the mean energy dissipation rate
〈ε〉 for homogeneous and isotropic turbulence. However, this equation is usually
not verified in small to moderate Reynolds number flows. This is due partly to the
lack of isotropy in either sheared or non-sheared flows, and, more importantly, to
the influence, which is flow specific, of the inhomogeneous and anisotropic large
scales. These shortcomings are examined in the context of the central region of a
turbulent channel flow. In this case, we propose a generalized form of Kolmogorov’s
equation, which includes some additional terms reflecting the large-scale turbulent
diffusion acting from the walls through to the centreline of the channel. For moderate
Reynolds numbers, the mean turbulent energy transferred at a scale r also contains
a large-scale contribution, reflecting the non-homogeneity of these scales. There is
reasonable agreement between the new equation and hot-wire measurements in the
central region of a fully developed channel flow.

1. Introduction
Kolmogorov’s equation can be derived from the Navier–Stokes equations, using

homogeneity and isotropy:

−〈(∆u1)
3〉+ 6ν

d

dr
〈(∆u1)

2〉 = 4
5
〈ε〉r, (1.1)

with the increment ∆u1(r) ≡ u1(x1+r)−u1(x1), where u1 is the longitudinal (streamwise)
velocity component, and 〈ε〉 is the mean energy dissipation rate:

〈ε〉 =
1

2
ν

〈(
∂ui

∂xj
+
∂uj

∂xi

)2
〉
. (1.2)

Here, repeated indices indicate summation, ν is the kinematic viscosity of the fluid, ui
is the fluctuating velocity component in the ith-direction, and angular brackets denote
time averaging.

Equation (1.1) is of fundamental interest, since it is an equilibrium equation between
second- and third-order moments; one interpretation is that it represents a mean
turbulent energy balance for each scale r. Writing (1.1) as A + B = C , term C ,

† Present address: LET, University of Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers,
France.



88 L. Danaila, F. Anselmet, T. Zhou and R. A. Antonia

which is directly proportional to the dissipation rate 〈ε〉, is associated with the energy
transferred at any scale r. This equation indicates that the mean energy transferred
at a scale r is made up of both the energy lost through the turbulent advection (term
A) and the energy lost by molecular destruction (term B). It can be interpreted as an
energy budget equation involving 〈ε〉, but it can also be thought of as an equation
which provides information about 〈ε〉. The equation is a relatively simple means of
obtaining 〈ε〉, as the second- and third-order moments can be inferred from single
hot-wire measurements via Taylor’s hypothesis. Equation (1.1) is essentially a mean
turbulent energy budget equation and does not contain high-order moments. In this
form, it does not reflect the influence of small-scale (internal) intermittency. The
implications of this equation in the context of internal intermittency will be discussed
later. In order to determine how closely measurements satisfy (1.1), an accurate
determination of 〈ε〉 is required. This represents a major experimental challenge since
all the derivatives in (1.2) need to be estimated. For statistically steady systems, 〈ε〉
is identical to the rate of energy injected at the large scales, and obviously, the same
as the rate of energy transferred at each scale through the cascade. This reflects
the hybrid nature of 〈ε〉, which is not just a small-scale quantity but also contains
information about the energy which has been transferred from the large scales down
to the small scales.

Since spatial derivatives of velocity fluctuations are very difficult to measure
accurately, additional hypotheses are necessary. Homogeneity leads to 〈ε〉hom ≡
ν〈(∂ui/∂xj)2〉, where generally the subscript indicates the method or hypothesis used
to estimate 〈ε〉, and the absence of a subscript signifies that the ‘true’ 〈ε〉, given
by (1.2), is referred to. A relatively crude approximation for 〈ε〉hom is obtained by
supposing that the three spatial directions are equivalent so that only derivatives with
respect to x1 appear in the expression, namely

〈ε〉hom ≡ 3ν

〈(
∂ui

∂x1

)2
〉
. (1.3)

Local isotropy results in (Monin & Yaglom 1975)

〈ε〉iso ≡ 15ν

〈(
∂u1

∂x1

)2
〉
. (1.4)

Equation (1.4) is the simplest and most often used relation for obtaining the mean
turbulent energy dissipation rate. Its ability to provide a good approximation to the
‘true’ value of 〈ε〉 hinges on whether the small-scale motion is isotropic. It is also
worth emphasizing that the quality of the data and data processing are important.
Here we recall the errors caused by the finite spatial resolution of the probe, and the
need to apply (spectral) corrections before a ‘correct’ value of 〈ε〉iso can be obtained.
To bypass these difficulties, a simpler way of estimating 〈ε〉 is to focus on the larger
scales of the flow. There is thus a strong incentive to devise a method for inferring
〈ε〉 which eliminates the need to evaluate velocity derivatives.

The inertial range (IR) is defined as the range of scales which are much smaller
than the injection scale, and much larger than the dissipative scale (comparable to
the Kolmogorov length scale η ≡ (ν3/〈ε〉)1/4). In the IR, (1.1) reduces to

−〈(∆u1)
3〉 = 4

5
〈ε〉r. (1.5)

Equation (1.5) could be used as a practical method to obtain 〈ε〉, since a single
hot-wire measurement yields 〈(∆u1)

3〉 (Anselmet et al. 1984). In practice, 〈ε〉 is inferred
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from the so-called ‘plateau’ method, whereby the ratio −〈(∆u1)
3〉/(4r/5) is plotted

vs. r. A similar approach has been used in estimating 〈ε〉 from the u1-spectrum
(e.g. Saddoughi 1997). It should be stressed that (1.5) is strictly valid only when the
IR is established. This is expected only at very large Reynolds numbers (e.g. Qian
1997) or when the conditions of stationarity, isotropy and homogeneity are strictly
satisfied. Equation (1.1) is verified only for small scales when the Taylor-microscale
Reynolds number Rλ is moderate (Antonia, Chambers & Browne 1983, see also figure
3) (Rλ ≡ u′1λ/ν, where a prime denotes the r.m.s. value and λ ≡ u′1/(∂u1/∂x1)

′ is the
longitudinal Taylor microscale). At larger scales, the approach to a four-fifths law is
expected to be quite slow, as demonstrated by Qian (1999).

Using a Taylor series expansion about r = 0, equation (1.1) reduces to the isotropic
form of 〈ε〉:

lim
r→0

6ν
d

dr
〈(∆u1)

2〉 = 6ν
d

dr

[〈(
∂u1

∂x1

)2
〉
r2

]
= 12ν

〈(
∂u1

∂x1

)2
〉
r = 4

5
〈ε〉r V

〈ε〉 = 15ν

〈(
∂u1

∂x1

)2
〉

= 〈ε〉iso. (1.6)

A more general relation between second- and third-order moments of velocity
increments, namely

−〈∆u1(∆ui)
2〉+ 2ν

d

dr
〈(∆ui)2〉 = 4

3
〈ε〉r (1.7)

was presented in Antonia et al. (1997a), where the analogy between (1.7) and Yaglom’s
equation for temperature increments was also discussed. Equation (1.7) actually
represents an extended form (for all velocity components) of Kolmogorov’s equation.
It is consistent, for very small scales, with the homogeneous form of 〈ε〉:

2ν lim
r→0

d

dr
〈(∆ui)2〉 = 4ν

〈(
∂ui

∂x1

)2
〉
r = 4

3
〈ε〉r V

〈ε〉 = 3ν

〈(
∂ui

∂x1

)2
〉

= 〈ε〉hom. (1.8)

Equations (1.1) and (1.7) characterize the energy equilibrium state of the flow for
stationary isotropic turbulence. Our objective is to gain some insight into the physical
significance of the imbalance between the left and right sides of (1.1), for moderate
Reynolds numbers. It is reasonable to think that at least one term is needed to account
for this imbalance. This term plays the role of a ‘forcing’ term, and its contribution
would be mainly to re-establish the energy balance for the large scales.

Kolmogorov’s equation with an additional forcing term was presented in a generic
form by Frisch (1995) and re-discussed, in the wider context of local homogeneity
and isotropy, by Hill (1997). A particular form for decaying turbulence was given
by Saffman (1968). Lindborg (1999) analysed a generalized form of Kolmogorov’s
equation which takes into account a time-dependent term. This new term was further
estimated using the k − ε model. The generalized equation was then tested against
measurements in grid turbulence and on the axes of a jet and a wake. Reasonable
agreement was obtained in each case. This is somewhat surprising in the context
of the jet and the wake since the analysis neglected the large-scale lateral turbulent
diffusion for these two flows.
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Moisy, Tabeling & Willaime (1999) studied another model-containing form of
Kolmogorov’s equation, previously deduced by Novikov (1965). The supplementary
term involves an external length scale, which characterizes the forcing in a global
manner. Using measurements in low-temperature helium gas, they assumed the validity
of the equation over a limited range of scales, approximately corresponding to the
IR, and indirectly inferred the magnitude of the external length scale.

While the two previous studies involved modelling, a different approach was con-
sidered by Danaila et al. (1999). Generalized forms of Kolmogorov’s and Yaglom’s
equations were written and tested in isothermal and non-isothermal decaying grid
turbulence. No modelling was required, and the additional term was estimated di-
rectly from measurements. This new term reflects the non-stationarity (in a reference
system moving with the mean stream) or the large-scale non-homogeneity along the
stream direction, when using a fixed reference system. This generalized equation is
an exact expression, although adequate for decaying grid turbulence only. The same
supplementary term is unlikely to apply to other flows. As emphasized in Danaila
et al. (1999), continuous energy injection flows, such as boundary layers and channel
flows, differ from decaying flows, e.g. grid turbulence, jets and wakes.

In the present paper, we identify the origin of the imbalance between the different
terms in (1.1) and (1.7) at the centreline of a fully developed channel flow for relatively
small Reynolds numbers. There is no streamwise decay, but 〈ε〉 must balance the
lateral diffusion in the wall-normal direction x3. Different generalized forms of Kol-
mogorov’s equation, appropriate to this flow, are deduced in § 2. Accordingly, different
estimations of 〈ε〉 are critically compared in § 4 following a brief description of the ex-
periment in § 3, and the generalized equations are compared with measurement in § 5.
Another modification of the Kolmogorov equation, wherein the assumption of local
homogeneity is relaxed further, is developed and compared with measurements in § 6.

2. Theoretical considerations
As noted earlier, the main objective is to gain some insight into the flow physics

which results in an imbalance between the left- and right-hand sides of (1.1) on
the channel centreline at small/moderate Reynolds numbers. The slight (large-scale)
non-homogeneity, which causes this difference, is taken into account when deriving
Kolmogorov’s equation, although local isotropy is still used for all the other terms: tur-
bulent advection, molecular diffusion, and pressure-containing terms. From a mathe-
matical point of view, the extra non-homogeneous term is introduced and manipulated
in a quasi-isotropic context. In order to highlight the manner in which this term comes
about, we recall briefly the salient steps in the derivation of Kolmogorov’s equation.

Using the same procedure as presented in Monin & Yaglom (1975, hereafter
referred to as MY), we consider a fixed reference system S in which the coordinates
and velocity components are x and u, and a moving reference system for which the
origin x+ moves with the velocity u+. We then write the incompressible Navier–Stokes
equations at the two points x and x+, separated by the increment r = x+ − x:

∂tui + uα∂αui = −∂ip/ρ+ ν∂2
αui, (2.1)

∂tu
+
i + u+

α ∂
+
α u

+
i = −∂+

i p
+/ρ+ ν∂2+

α u
+
i . (2.2)

The superscript + refers to x+, and ρ is the fluid density. In (2.1) and (2.2), ui is the
instantaneous velocity vector, with 〈ui〉 = U1δi1 (δij is Kronecker’s symbol, and U1 is
the mean velocity of the flow); p is the pressure, ∂t ≡ ∂/∂t, ∂α ≡ ∂/∂xα and ∂2

α is the
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Laplacian ∂2/∂x2
α (hereafter, the notation ∂α and ∂+

α will be used to denote derivatives
with respect to xα and x+

α ; when other spatial variables are involved, the derivatives
will be written explicitly, e.g. ∂/∂r or ∂/∂Xα). We then consider that the two points
x and x+ are independent, i.e. ui depends only on x and u+

i depends only on x+,
so that subtraction of (2.1) from (2.2) yields an equation for the velocity increment
∆ui = u+

i − ui:
∂t(∆ui)+U1∂1(∆ui)+u+

α ∂
+
α (∆ui)+uα∂α(∆ui) = −(∂i+∂

+
i )(∆p)/ρ+ν(∂2

α +∂2+
α )(∆ui).

(2.3)
In (2.3) we explicitly used the mean velocity U1, while, for simplicity, ui denotes the
fluctuating velocity field, with 〈ui〉 = 0. Hereafter, ui only denotes the fluctuating
velocity.

By subtracting and adding the term uα∂
+
α (∆ui) to the left-hand side of (2.3),

∂t(∆ui) +U1∂1(∆ui) + ∆(uα)∂
+
α (∆ui) + uα∂

+
α (∆ui) + uα∂α(∆ui)

= −(∂i + ∂+
i )(∆p)/ρ+ ν(∂2

α + ∂2+
α )(∆ui). (2.4)

Assuming local homogeneity, all derivatives with respect to different spatial di-
rections can be written using the components of r (Hill 1997, or Antonia et al.
1997a)

∂+
i ≡ ∂

∂ri
, ∂i ≡ − ∂

∂ri
. (2.5)

Equation (2.4) becomes

(∂t +U1∂1)(∆ui) + ∆(uα)
∂(∆ui)

∂rα
+ uα[∂

+
α + ∂α](∆ui)

= −(∂i + ∂+
i )(∆p)/ρ+ ν(∂2

α + ∂2+
α )(∆ui). (2.6)

As already emphasized in Antonia et al. (1997a), the third term on the left is omitted
in the derivation of the same equation in MY. This disagreement arises from the use of
different reference systems: MY used a translating reference system for the left-hand
side of the equation, but the right-hand side was written in a fixed reference system
(see (22.14) in MY). A fixed reference system (S) has been used consistently in (2.6).
The third term on the left of (2.6) will be retained and we will show that it is important
when considering slightly non-homogeneous flows, such as the channel flow.

In the first instance, we follow the same procedure as in MY (p. 401), but retaining
the new term on the left of (2.6). The evolution equation for the mixed structure
function Dij(r) = 〈∆ui∆uj〉(r) can be obtained by first multiplying both sides of (2.6)
by ∆uj , and both sides of the analogous equation (for the increment ∆uj) by ∆ui, then
adding the two equations and averaging:

(∂t +U1∂1)Dij(r) + 〈uα[∂α + ∂+
α ](∆ui∆uj)〉(r) +

∂Dijk

∂rk
(r) = 2ν∂2

αDij(r)− 4
3
〈ε〉δij , (2.7)

where Dijk(r) = 〈∆ui∆uj∆uk〉(r) is the third-order mixed structure function, and 〈ε〉 =
〈ε〉hom. The first two terms are specific to our work, while the others can be found in
e.g. (22.15) of MY. This derivation assumes however some ‘classical’ Kolmogorov-like
hypotheses: local homogeneity and local isotropy of the flow, and large turbulent
Reynolds numbers. Local isotropy also leads to the vanishing of all terms containing
pressure correlations (see MY, or Antonia et al. 1997a). Since the present focus is on
the centreline of the channel flow, the local isotropy assumption seems reasonable (e.g.
Antonia, Kim & Browne 1991), at least for some of the terms. Had the focus been
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on the flow region away from the centreline, local isotropy would not be adequate,
and pressure terms should be retained.

Note that, in a fixed reference system, the non-stationary term (∂t) is zero, while the
large-scale non-homogeneous term U1∂1 only must be kept in decaying flows such as
grid turbulence, jets and wakes. A fully developed turbulent channel flow does not
decay with respect to x1, so the first term (∂t +U1∂1)Dij(r) is zero. More importantly,
the second term on the left of (2.7) is specific to the present flow, and could be further
written, using incompressibility and independence of x and x+, as

NHij(r) = 〈uα[∂α + ∂+
α ](∆ui∆uj)〉(r) ≡ [∂α + ∂+

α ]〈uα∆ui∆uj〉(r). (2.8)

Homogeneity of the flow usually translates to ∂i〈 〉 ≡ 0 (see Hill 1997). The same
identity holds when analysing relatively small scales of a locally homogeneous flow.
In the channel flow, a slight large-scale non-homogeneity is to be taken into account,
since statistical averages are not constant along the direction x3 normal to the wall.
Briefly,

∂1〈 〉 = ∂2〈 〉 ≡ 0, ∂3〈 〉 6= 0, (2.9)

and NHij(r) can be finally written as

NHij(r) = [∂3 + ∂+
3 ]〈u3∆ui∆uj〉(r). (2.10)

Note here that relation (2.9) applies to coordinates in a fixed reference system S,
in which x3 is normal to the channel wall. We have adopted here a non-orthodox
treatment of different terms in (2.7). NHij takes into account a small non-homogeneity
at large scales, while all the other terms are based on local homogeneity and local
isotropy. Hill (1997, p. 71) discussed in detail this aspect, noting that local homogeneity
implies that ‘statistics of derivatives present a very rapid variation with respect to r
relative to the variation with respect to X ≡ (x+ x+)/2, provided that r is sufficiently
small . . . when derivatives with respect to x or x+ are transformed into derivatives with
respect to r and X , the differentiation with respect to X being negligible compared
to that with respect to r’. This rule has been applied when evaluating the nonlinear
term ∂Dijk/∂rk .

The approach used in deriving the ‘classical’ Kolmogorov equation consists of
contracting all tensors in (2.7), i.e. taking the sum of all terms in this equation,
with respect to the indices i = j. Since terms such as the turbulent advection and
molecular diffusion are rather small-scale phenomena, they could be then considered
as being locally isotropic, and could be treated in the same way as in the classical
approach. We now consider physical and mathematical properties of the second-order
non-homogeneous tensor NHij(r), when the argument r is a vector oriented in any
direction. This is an anisotropic tensor, since it explicitly contains a derivative and a
velocity component along the x3-direction. If the flow were isotropic, a replacement
of the x3-derivative by a derivative with respect to x1 should lead to equivalent
results. We will show that NHij(r) exhibits properties similar to those of an isotropic
second-order tensor, after using the fact that ∂+

3 〈·〉 = ∂3〈·〉, when the first quantity
is estimated in a fixed reference system S. In particular, we show in Appendix A
that the properties of NHij(r) are similar to those of Dij(r), which is reasonably
isotropic on the channel centreline. The structure functions Dij(r) and NHij(r) can
both be expressed in terms of the longitudinal structure functions (depending only
on separations along any spatial direction, e.g. x1), via similar relations

D33(r) = D11(r) +
r

2

d

dr
D11(r), (2.11)
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and

NH33(r) = NH11(r) +
r

2

d

dr
NH11(r). (2.12)

Relations (2.11) and (2.12) will be tested against experimental data in § 5. In
this section, we have implicitly assumed that, if second-order structure functions (or
correlations) are locally isotropic, then the new structure functions we have introduced
also exhibit some quasi-isotropic properties, e.g. (2.12).

Local isotropy and projection onto the x1-direction lead to the classical form of
the Kolmogorov equation, except that the supplementary term NHij(r) is retained. We
have assumed local isotropy for all the classical terms, and that NHij(r) has the same
properties as Dij(r). Since the latter tensor can be written in terms of D11(r) (with r
along x1), the extra non-homogeneous tensor NHij(r) is also written using NH11(r).
Thus, the generalized form of the Kolmogorov equation is

−〈(∆u1)
3〉+ 6ν

d

dr
〈(∆u1)

2〉+
6

r4

∫ r

0

y4[−∂3〈u3(∆u1)
2〉(y)]dy = 4

5
〈ε〉r, (2.13)

where r = |r| is along x1. The term containing the integral reflects the slight non-
homogeneity of the flow since it contains derivatives with respect to x3. We now
consider the behaviour of (2.13) when r → ∞ or, in practice, when r exceeds L, the
integral length scale. As will be shown in § 5, the third term on the left is, like the
second term, always positive so that −〈(∆u1)

3〉 will always be smaller than (4/5)〈ε〉r.
The same result has already been obtained for decaying grid turbulence. The first
and second terms on the left of (2.13) vanish, while the new non-homogeneous
term (hereafter called NH) balances term C , which is proportional to 〈ε〉. Since
limr→∞〈u3(∆u1)

2〉 = 〈u3u
2
1〉 (recall that x and x+ are independent), it follows that

lim
r→∞NH = lim

r→∞
6

r4

∫ r

0

y4[−∂3〈u3(∆u1)
2〉]dy

=
6

L4

∫ L

0

y4[−∂3〈u3(∆u1)
2〉]dy + lim

r→∞
6

r4

∫ r

L

y4[−∂3〈u3(∆u1)
2〉]dy. (2.14)

For r > L, all moments become independent of r. Thus, when r →∞,

6/L4

∫ L

0

y4[−∂3〈u3(∆u1)
2〉]dyn lim

r→∞(6/r4)

∫ r

L

y4[−∂3〈u3(∆u1)
2〉]dy.

Then, using the large-scale limits of the mixed moments 〈u3(∆u1)
2〉

lim
r→∞NH = lim

r→∞
6

r4

∫ r

L

y4[−∂3〈u3(∆u1)
2〉]dy = − 6r

5
∂3〈u3u

2
1〉 = 4

5
〈ε〉r, (2.15)

or

〈ε〉 = − 3
2
∂3〈u3u

2
1〉. (2.16)

Equation (2.16) can be perceived as a means of defining the mean energy dissipation
rate (Townsend 1976), in the specific context of the centreline of a plane channel flow.
A turbulent kinetic energy balance can be derived (e.g. equation (5.4.1) of Townsend
1976) from the Navier–Stokes equations

1
2
∂t〈u2

i 〉+ 1
2
∂j〈uju2

i 〉 = −∂i〈pui〉/ρ+ ν〈ui∂2
j ui〉

= −∂i〈pui〉/ρ+ 1
2
ν∂2

j 〈u2
i 〉 − 〈ε〉hom. (2.17)
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Using stationarity, ∂t〈u2
i 〉 ≡ 0, while ∂j〈uju2

i 〉 = ∂3〈u3u
2
i 〉. Then, (2.17) becomes

〈ε〉hom = − 1
2
∂3〈u3u

2
i 〉 − ∂3〈pu3〉/ρ+ 1

2
ν∂2

j 〈u2
i 〉, (2.18)

where the first term on the right represents the u3 diffusion, the second is the pressure
diffusion, and the third is the viscous diffusion. Assuming isotropy, the correlation
between pressure and velocity is zero (Laufer 1954). Other terms are simplified and
written in terms of only one velocity component (u1), the viscous–diffusion term is
negligible sufficiently away from the wall. Equation (2.18) reduces to

〈ε〉LSiso ≡ − 3
2
∂3〈u3u

2
1〉. (2.19)

The subscript iso indicates that isotropy is assumed, while the superscript LS refers
to large-scales and therefore to the fact that the one-point turbulent energy budget
has been used for obtaining this relatively simple approximation to 〈ε〉. Equation
(2.16) clearly demonstrates that our generalization of the Kolmogorov equation is
consistent, for very large scales, with the approximation 〈ε〉 ' 〈ε〉LSiso . The degree to
which measurements satisfy (2.16) will be discussed in § 5.

It is also possible to generalize (1.7), starting from (2.6). The procedure is the same
as that presented in Antonia et al. (1997a). After multiplying this equation by 2∆ui,
averaging, and using 4〈∆ui∂2

α∆ui〉 = 2〈∂2
α(∆ui)

2〉 − 4〈(∂αui)2〉, we obtain

(∂t +U1∂1)〈(∆ui)2〉(r) +
∂

∂rα
〈∆uα(∆ui)2〉(r) + [∂3 + ∂+

3 ]〈u3(∆ui)
2〉(r)

= 2ν
∂2

∂r2
α

〈(∆ui)2〉(r)− 4ν〈(∂αui)2〉 − 2〈∆ui(∂i + ∂+
i )∆p〉/ρ(r). (2.20)

All statistical properties are constant with respect to x1, except the mean pressure,
which does not appear in our equations. Indeed, term Π = 〈∆ui(∂i + ∂+

i )∆p〉, which
contains the pressure increment, could be written as

Π = 〈∆ui(∂i + ∂+
i )∆p〉 ≡ 2∂3〈∆u3∆p〉,

since pressure increments are inferred from measurements at a single point x1, via
Taylor’s hypothesis. Thus, the mean pressure does not directly enter term Π , at
least to a first approximation. This term can be neglected on the centreline of a
channel flow because the small scales are nearly isotropic there. For large separations,
∂3〈∆u3∆p〉 → 2∂3〈u3p〉, which is nearly zero on the channel centreline, because of local
isotropy (see § 4). This is a relatively strong assumption since isotropy implies a zero
correlation between pressure increments and velocity increments. Thus, 〈∆u3∆p〉 is
zero on the centreline, but not zero away from the centreline. The correlation between
pressure increments and different statistical quantities needs further investigation, and
term Π should not be negligible away from the centreline. With these simplifications,
and ν〈(∂αui)2〉 = 〈ε〉, (2.20) reduces to

(∂t +U1∂1)〈(∆ui)2〉(r) +
∂

∂rα
〈∆uα(∆ui)2〉(r)

+[∂3 + ∂+
3 ]〈u3(∆ui)

2〉(r) = 2ν
∂2

∂r2
α

〈(∆ui)2〉(r)− 4〈ε〉. (2.21)

After projecting (2.21) onto the x1-direction, we invoke local isotropy for those terms
which characterize dissipative and IR scales, i.e. 〈(∆ui)2〉(r) and 〈∆uα(∆ui)2〉(r). For
local isotropy, these structure functions depend only on the modulus r = |r|. We have
previously shown that 〈∆ui∆uj〉(r) and ∂3〈u3∆ui∆uj〉(r) have similar properties under
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local isotropy, so their contractions are also analogous. If the first is isotropic and
depends on r only, then the second also depends only on r. This does not imply that
NHij(r) is isotropic, since it explicitly contains a derivative with respect to x3. We
choose x1 as the direction onto which the projection is implemented. For simplicity,
we drop the index 1 in r1, keeping in mind that, when performing an experiment, this
separation is measured along x1. Equation (2.21) becomes

(∂t +U1∂1)〈(∆ui)2〉(r) +

(
2

r
+
∂

∂r

)
〈∆u1(∆ui)

2〉(r)

+[∂3 + ∂+
3 ]〈u3(∆ui)

2〉(r) = 2ν

(
2

r
+
∂

∂r

)
∂

∂r
〈(∆ui)2〉(r)− 4〈ε〉. (2.22)

Using stationarity and streamwise homogeneity, (2.22) can be reduced to

−〈∆u1(∆ui)
2〉+ 2ν

d

dr
〈(∆ui)2〉+

2

r2

∫ r

0

y2[−∂3〈u3(∆ui)
2〉]dy = 4

3
〈ε〉r, (2.23)

where y is a dummy variable, identifiable with the separation along x1. Equation
(2.23) can be written in the dimensionless form

A+ B +NH = C,

with C = (4/3)r/η. NH expresses the slight non-homogeneity of the flow and includes
all velocity components. The limiting form, at very large scales, of this equation can
be obtained by applying the same method used in connection with (2.14) and (2.15).
The result is

lim
r→∞NH = lim

r→∞
−2

r2

∫ r

L

y2∂3〈u3(∆ui)
2〉dy = − 2r

3
∂3〈u3u

2
i 〉 = 4

3
〈ε〉r. (2.24)

We now introduce another definition of 〈ε〉, slightly more general than (2.19), which
may be inferred from (2.18). This is a kinetic energy balance equation, using homo-
geneity and only weak isotropy (pressure diffusion is neglected):

〈ε〉LShom = − 1
2
∂3〈u3u

2
i 〉, (2.25)

where the subscript hom indicates that the strongest hypothesis used here is homo-
geneity, and the superscript LS indicates that it is a one-point approach, so that it
concerns the large scales of the flow. Equation (2.24) then reduces to 〈ε〉 = 〈ε〉LShom. The
generalized form of the extended Kolmogorov equation (2.23) is therefore consistent,
at the very large scales, with the equality 〈ε〉 = 〈ε〉LShom.

3. Experimental conditions
The open-circuit type channel flow is supplied by a centrifugal blower driven by

a 8.4 kW Siemens motor equipped with a thyristor speed controller. Two cylinders
of 1.6 mm diameter were fixed on each of the main walls near the entrance of the
channel to trip the boundary layers. The working section is 7.32 m long, 0.76 m high
and 0.042 m wide. The aspect ratio (≈ 18) is sufficiently large for the mean flow to be
approximately two-dimensional. The measurements were made at a Reynolds number
Re = 3300 (Re ≡ U0h/ν, where U0 ≡ 2.5 m s−1 is the mean velocity at the centreline
and h is the channel half-width). On the centreline, the Taylor-microscale Reynolds
number Rλ is about 36, and the Kolmogorov length scale η, based on the mean energy
dissipation rate 〈ε〉iso, is about 0.5 mm. The measurement location was at 340h from
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the entrance. The measured mean static pressure gradient and moments of u1 and u3

along the centreline indicated that the flow was fully developed at x1 ' 150h. Also
note that, at the measurement location, the turbulence intensity u′1/U1 is about 4%
and the ratio u′1/u′2 about 1.25 on the centreline.

The data used in this paper were obtained from the two inclined wires of a lateral
vorticity probe. A detailed description of this probe is given in Zhou et al. (1998). The
inclined wires allowed the determination of u1 and u3 fluctuations. The included angle
of the two wires is about 100◦. The separation between the wires was about 1.2 mm.
The hot wires were etched from 2.5µm diameter Wollaston Pt–10% Rh wires with an
active length of about 0.5 mm. The length to diameter ratio of the wires was about
200. The probe was calibrated at the centreline of the channel against a Pitot tube
connected to a MKS Baratron pressure transducer (least count = 0.01 mm water).
The yaw calibration was performed over ±24◦ (using 4◦ steps). For each angle, the
probe was relocated at the centreline of the channel. The probe was traversed in the
x3-direction between about 1 mm from the wall to 2 mm beyond the centreline.

The hot wires were operated with constant-temperature anemometers at an overheat
ratio of 1.5. The output signals from the anemometers were passed through buck
and gain circuits and low-pass filtered (the cut-off frequency fc, which was in the
range 400–1250 Hz depending on the transverse position of the probe, was set close to
the Kolmogorov frequency U1/2πη). The signals were then digitized into a personal
computer using a 12 bit A/D converter at a sampling frequency, fs, of 2500 Hz. The
record duration was about 60 s. This was estimated to be long enough for the second-
and third-order moments of ∆u1 and ∆u3 to converge.

4. Estimations of 〈ε〉
Before considering the extended Kolmogorov equations, we first consider results

for 〈ε〉 obtained using different approaches. Four methods have been identified, each
providing an estimate for comparison with the ‘true’ 〈ε〉, given by (1.2). As already
noted, an experimental estimation of this latter quantity is prohibitive. We have opted
to identify 〈ε〉 with the DNS estimates of it, as in Antonia, Zhou & Romano (1997b).
The present experiment was performed for the same flow and Reynolds number as
the numerical simulations (Kim, Moin & Moser 1987). Whilst one cannot expect
exact similarity of conditions between the simulation and real flows, the simulation
is able to estimate all the spatial derivatives with acceptable accuracy, provided the
numerical resolution is adequate.

There have been several experimental attempts to approximate 〈ε〉 in channel and
pipe flows. Laufer (1954) measured up to five of the nine terms in the homogeneous
form of 〈ε〉 in a pipe flow; he used isotropy to infer the remaining terms. This method
is laborious. Its accuracy depends, to a large extent, on the high-frequency response of
the hot-wire equipment, the spatial resolution of the probes used and also the degree
with which isotropy is satisfied. Departures from isotropy are accentuated as the wall
is approached; the measurement inaccuracy of derivatives is further exacerbated as
the magnitude of η decreases. In this flow region, the energy budget is likely to provide
a better estimate of 〈ε〉, notwithstanding the difficulty of measuring the diffusion term.

Many direct numerical simulations of the channel flow have been carried out since
the original simulation of Kim et al. (1987). They all indicate (e.g. Mansour, Kim &
Moin 1988; Kasagi & Shikazono 1995) that, in the wall region, the pressure diffusion
is generally small by comparison to either ∂3〈u3u

2
i 〉, the diffusion by the wall-normal

velocity fluctuations, or the viscous diffusion.
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Figure 1. Normalized distributions of the three diffusion terms of (2.18). These terms have been
normalized by 〈ε〉. x+

3 ≡ x3Uτ/ν, where Uτ is the friction velocity. The DNS data are from Kim et
al. (1987): viscous diffusion (�), turbulent diffusion (�) and pressure diffusion (∗).

The three diffusion terms in the energy budget equation, (2.18), are plotted, after
normalization by 〈ε〉, in figure 1. The DNS data are those of Kim et al. (1987). At
the wall, viscous diffusion must balance 〈ε〉 whereas at the centreline (x+

3 = 180), the
u3-diffusion and 〈ε〉 are approximately equal, in reasonable agreement with (2.19).
The pressure-diffusion term, at the centreline, is less than 10% of the u3-diffusion.

Lawn (1971) inferred 〈ε〉 from the behaviour of the u1-spectrum in the IR:

E(k1) = K〈ε〉2/3k−5/3
1 ,

with K ≈ 0.51. The advantage of this approach is that the spectrum needs only to
be accurately measured over a medium frequency range, as was noted by Bradshaw
(1969). This is essentially the spectral equivalent of Kolmogorov’s equation in the
context of determining 〈ε〉. Strictly, for compliance with Kolmogorov (1941), both
approaches become more accurate as the Reynolds number increases, provided local
isotropy is satisfied. Lawn also compared estimates of 〈ε〉, obtained from different
methods. He underlined that, even if the measurement of 〈ε〉 is in error, the spectral
method is robust and more likely to provide meaningful estimates when the Reynolds
number is large enough. Although K has been shown to remain ‘constant’ down to
Rλ ' 100 (e.g. Bradshaw 1969; Sreenivasan 1995), recent results (e.g. Antonia, Pearson
& Zhou 2000) indicate that both the magnitude of the spectral exponent as well as
that of K increase slowly with Rλ at least in the range Rλ . 1000; it is possible that
constant values may be reached at much higher Rλ.

Eggels et al. (1994) used both direct numerical simulations and experiments to
study a fully developed turbulent pipe flow. The agreement between the numerical
and experimental results was good for lower-order statistics and reasonable for higher-
order statistics. Various terms in the energy budget equation compared favourably
using both approaches. However, the dissipation rate was inferred only from the
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Small scales Large scales

Generalized Kolmogorov’s equation (2.13) 〈̃ε〉iso = 0.88 〈̃ε〉LSiso = 1.32

Generalized form of the extended 〈̃ε〉hom = 0.85 〈̃ε〉LShom = 0.95
Kolmogorov equation (2.23)

Table 1. Ratios of various experimental estimations of 〈ε〉 and the true (DNS) 〈ε〉 on the channel
flow centreline.

DNS data. Kim et al. (1987) also compared their turbulent channel flow simulation
results with available existing experimental data at a comparable Reynolds number.
Although the computed turbulence statistics were generally in good agreement with
the experimental results, there were also discrepancies in the wall region, mainly due
to the difficulty of adequately approximating 〈ε〉 in the experiment.

In the light of the previous observations, it seems reasonable to use the numerical
value of 〈ε〉 as a reference against which estimates from the four methods identified
in §§ 1 and 2 can be assessed. We recall here that (2.13) is consistent when r → 0 with
〈ε〉 ≡ 〈ε〉iso, as given by (1.4), and, when r → ∞, with 〈ε〉 ≡ 〈ε〉LSiso , as given by (2.19).
Also, (2.23) reduces to 〈ε〉 ≡ 〈ε〉hom, given by (1.3), when r → 0, and to 〈ε〉 ≡ 〈ε〉LShom,
given by (2.25). All four methods require measurements of different velocity compo-
nents on the channel centreline. In order to estimate derivatives with respect to x3 of
different velocity components, we used simultaneous measurements of u1 and u3 at dif-
ferent x3 positions. When estimating 〈ε〉iso and 〈ε〉hom, only measurements on the axis
were used, while for the other two estimates, off-axis measurements were also used. For
example, in order to estimate 〈ε〉LShom from ∂3〈u3u

2
i 〉, values of 〈u3u

2
i 〉 were obtained at

different values of x3, and the differentiation was carried out using finite differencing.
The result does not depend on the range used for x3, provided x3 is sufficiently small.

Table 1 contains the four estimates of 〈ε〉; the tilde denotes that these values
have been normalized by the reference (DNS) value. A value of 1 represents perfect
agreement with the ‘true’ 〈ε〉. The value closest to 1 is obtained from the relation
based on homogeneity and quasi-isotropy (two velocity components are used): 〈ε〉LShom
is within 5% of the DNS value. This result does not necessarily mean that a one-point
approach will always be able to yield a reliable value for a quantity as complex as 〈ε〉.

5. Validation of (2.13) and (2.23)
Here, we test the generalized forms of Kolmogorov’s equations against measure-

ment. Since these equations suppose local isotropy, we first consider isotropic relations
such as (2.11) and (2.12). Figure 2(a) shows NH33(r), the terms on the left-hand side of
(2.12), and term ∂3〈u3(∆u3)

2〉(r), estimated from measurements and Taylor’s hypothe-
sis. A perfect validation of (2.12) requires these two sets of terms to be identical. For
relatively large scales, the ratio of these terms is about 1.8. In figure 2(b), we represent
the ratio NH33(r)/∂3〈u3(∆u3)

2〉(r) ( e) which is 1 for relatively small scales. We also
represent the ratio D33(r)/〈(∆u3)

2〉 (�) which is close to the value 1 for small scales,
and different from 1 for larger scales. A value 1 for this latter ratio validates (2.11).
The conclusion we draw from this figure is that (2.12) is verified by experimental
data to (approximately) the same degree as relation (2.11) is experimentally satisfied.
It is not surprising that such (quasi)-isotropic relations are not well-satisfied for large
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Figure 2. Isotropy tests associated with the quantities NH33(r) and D33(r). (a) e, Measured NH33(r);
�, NH33(r) inferred from NH11(r) using relation (2.12). (b) e, Ratios of the NH33(r) values inferred
using relation (2.12) and those measured; �, ratios for D33(r) obtained using relation (2.11) and
those measured.
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Figure 3. Verification of (2.13): turbulent transport term A∗ (—–� ), small-scale diffusion term B∗
(–∗–∗–), A∗+B∗ (—–4 ), non-homogeneous term NH∗ (–•–•–). A∗+B∗+NH∗ (�) is to be compared
with C∗ (bold solid line).

scales, even on the channel axis. But an important step forward can be made by (only)
considering the extra non-homogeneous term NH(r) in (2.13) and (2.23).

The terms in the non-dimensional form of (2.13) are shown in figure 3 (a superscript
∗ denotes normalization by Kolmogorov scales). Note that at this small Reynolds
number, there is no IR; we can however identify a restricted scaling range (RSR)



100 L. Danaila, F. Anselmet, T. Zhou and R. A. Antonia

104

103

102

101

100

10–1

100 101 102 103 104

r*

NH*

B*

A*

C*

Te
rm

s 
in

 e
qu

at
io

n 
(2

.2
3)

Figure 4. Verification of (2.23): turbulent transport term A∗ (—–� ), small-scale diffusion term B∗
(–∗–∗–), A+B (—–4 ), non-homogeneous term NH∗ (—–• ). A∗+B∗+NH∗ (�) is to be compared with
C∗ (bold solid line).

given by 15 < r∗ < 40 (e.g. Antonia, Orlandi & Romano 1998) in which A is quasi-
linear. The supplementary term NH has been obtained in similar fashion to 〈ε〉LSiso ,
i.e. 〈u3(∆u1)

2〉 was estimated on the axis, and at different positions away from the
axis. The x3-derivative of these moments is then estimated by finite differencing and
NH was evaluated by integrating from r = 0, corresponding to NH ≡ 0. NH(r) is
small for small scales, and increases as the scale increases. Equation (2.13) is satisfied
to an accuracy of about 10% for the very small and intermediate scales. The sum
A∗ + B∗ +NH∗ is 10% smaller than C∗ (≡ 4r∗/5). This behaviour is consistent with
our previous result: the limit for the very small scales of the terms in (2.13) is
consistent with the isotropic definition of 〈ε〉iso, or (see table 1) 〈ε〉iso is 12% smaller
than 〈ε〉. On the other hand, for the very large scales, (2.13) corresponds to 〈ε〉LSiso
which over-estimates 〈ε〉 by 35%. This result re-emerges in figure 3, where the sum
A∗+B∗+NH∗ is about 40% larger than C∗ for the very large scales. In the RSR, NH
is even more important than A, reflecting the dominance of large-scale phenomena
at this relatively small Reynolds number. It is also worth emphasizing that the use of
〈ε〉iso, instead of 〈ε〉, satisfies (2.13) perfectly for the dissipative scales whereas, for the
large scales, the disagreement is as large as 50%. This value is obviously given by the
ratio 〈ε〉LSiso /〈ε〉iso. Such a verification for the small scales has previously been found
(Antonia et al. 1997b) in relation to the classical Kolmogorov equation. Similarly,
when using 〈ε〉LSiso instead of the real 〈ε〉, perfect verification is obtained for very large
scales, while the disagreement is very important for the dissipative scales.

All terms in (2.23) are displayed in figure 4. Here, mixed moments such as 〈u3(∆u1)
2〉

and 〈u3(∆u3)
2〉 have been calculated in order to obtain the new supplementary term.

The magnitude of the additional term (NH) decreases as the scale decreases. For very
small scales, (2.23) is verified with an accuracy of 10%, in agreement with the ability
of 〈ε〉hom to approximate 〈ε〉. For very large scales, the accuracy is about 5%, also in
accord with the differences between 〈ε〉LShom and 〈ε〉. Note the significant improvement



Turbulent energy scale budget equations in a fully developed channel flow 101

of the generalized budget equation, relative to (2.13), especially for the very large
scales. To highlight the degree to which the new equations are satisfied, the ratio

R ≡ (A∗ + B∗ +NH∗)
C∗

, (5.1)

which corresponds to (2.23), is shown in figure 6, below. Ideally, R should be equal
to 1. The actual value is 0.9 for the very small scales, and 0.95 for the very large
scales. For the latter scales, the equation is very well satisfied, implying that the main
phenomenon responsible for the equilibrium state of the flow is indeed the large-scale
non-homogeneity.

Equation (2.23) is better verified than (2.13) especially for very large scales, indi-
cating that all velocity components play a different role in the energy budget. For
intermediate scales (5η 6 r 6 40η), (2.23) is verified to an accuracy of only 30%, since
R ' 0.7 in the RSR. For each set of data, R displays a marked concave curvature
with the minimum (dip) occurring near the centre of the RSR. This may be due to
poor measurement accuracy, inadequate estimation of derivatives, and the fact that
the overall budget contains terms which reflect different phenomena: A (turbulent
advection), B (molecular diffusion) and NH (sign of the small non-homogeneity as-
sociated with large scales). The dip appears in the ‘transition’ between very large and
very small scales. Note however the improvement vis-à-vis the classical Kolmogorov
equation, for which A∗/C∗ ≈ 0.3.

The discrepancy for intermediate and small scales, even at the centre of the channel,
is presumably due to the lack of isotropy and homogeneity. This remark leads us to
the conclusion that the hypotheses used in deriving (2.13) and (2.23) are very intricate
concepts. There is therefore a need to revise them as well as the mathematical
manipulations required in order to best capture the important physics of the flow.
The emerging message is that the channel flow is more complex than grid turbulence
for which quite good results were obtained (see Danaila et al. 1999). Grid turbulence
is characterized by good local homogeneity and isotropy, and by a large-scale non-
homogeneity or non-stationarity. A more extended and realistic characterization is
obviously needed for the channel flow.

6. A generalized form of the extended Kolmogorov equation following
relaxation of local homogeneity

We return here to the derivation of (2.23) to gain more insight into its imperfect vali-
dation in the RSR. Since we characterize this flow by a large-scale non-homogeneity as
well as local homogeneity and isotropy, it is possible that, at this small Reynolds num-
ber, even the RSR scales could be contaminated by a weak local non-homogeneity.
Thus, starting from (2.4), special attention is given to the second term ∆(uα)∂

+
α (∆ui),

which transforms to ∆(uα)[∂(∆ui)/∂rα], using definitions (2.5). Our approach is then to
revisit definitions (2.5), especially in what concerns the derivative at x+, separated by
r from point x. As emphasized by Hill (1997) and in our discussion following (2.10),
the derivative with respect to X = (x + x+)/2 is negligible when local homogeneity
prevails. The possibility of a small local non-homogeneity cannot be discounted even
at the centre of the channel and the inclusion of the derivative with respect to X
seems unavoidable. Thus,

∂+
α ≡

(
∂

∂rα

)
+

1

2

∂

∂Xα

, ∂α ≡ −
(
∂

∂rα

)
+

1

2

∂

∂Xα

, (6.1)
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so that ∂/∂Xα = ∂α+∂
+
α . The new derivative just reflects a small local non-homogeneity

for intermediate scales. This is considered to be a relaxed form of local homogeneity,
since, whilst homogeneity and isotropy are assumed for some of the terms in (2.4),
new terms involving the derivative with respect to X are considered. In a physical
sense, the small local non-homogeneity is the extended effect of the larger scales on
the smaller scales. Thus,

∆(uα)∂
+
α (∆ui) = ∆(uα)

∂(∆ui)

∂rα
+

1

2
∆(uα)

∂

∂Xα

(∆ui). (6.2)

By taking into account the new term, proceeding in similar fashion to the derivation
of (2.23), by multiplying with 2∆ui and averaging, we obtain

(∂t +U1∂1)〈(∆ui)2〉(r) +

(
∂

∂rα
+

1

2

∂

∂Xα

)
〈∆(uα)(∆ui)

2〉(r)
+[∂+

α + ∂α]〈uα(∆ui)2〉(r)
= −2(∂i + ∂+

i )〈∆p∆ui〉(r) + 2ν〈∆ui(∂2
α + ∂2+

α )(∆ui)〉(r). (6.3)

Note here that the same kind of approach (e.g. relations (6.1)) could be used in order
to investigate the effect of the local non-homogeneity in the dissipative range, by
applying the same rule for term B, which contains the second derivative with respect
to x+. This calculation leads finally to the need for estimating the second derivative
with respect to Xα, and thus to x3 in our case, using experimental data.

Using local isotropy for those terms characterizing RSR phenomena, and approxi-
mate local isotropy for the supplementary terms such as the non-homogeneous term
NH , any dependence on r becomes a dependence on r only, and could be measured
along the stream direction. Neglecting the pressure term, (6.3) reduces to

(∂t +U1∂1)〈(∆ui)2〉+

(
∂

∂rα
+

1

2

∂

∂Xα

)
〈∆(uα)(∆ui)

2〉

+[∂+
α + ∂α]〈uα(∆ui)2〉(r) = 2ν

[
∂2

∂rα2
+

1

4

∂2

∂Xα
2

]
〈(∆ui)2〉 − 4〈ε〉, (6.4)

which is generally valid for all scales in any nearly locally isotropic flows or flow
regions such as

grid turbulence, where U1∂1〈 〉 is the only extra term relative to the classical
Kolmogorov terms equation;

centreline of a channel flow, where the extra term is ∂3〈 〉;
centreline of a jet flow, where both U1∂1〈 〉 and the lateral turbulent diffusion term

need to be retained.
In this work, we only consider the effect of the non-homogeneity on the ‘inertial’

term A, via relation (6.2), and we simply neglect the term ∂2/∂Xα
2〈(∆ui)2〉 in (6.4).

This is worth pursuing in future.
Finally, on the centreline of a channel flow, using the stationarity of this flow in a

fixed reference frame, the x1 homogeneity, the fact that (1/2)∂/∂Xα〈 〉 = (1/2)(∂α +
∂+
α )〈 〉 ≡ ∂3〈 〉 and assuming that ∂3〈∆u3(∆ui)

2〉 depends on r only, we obtain

−〈∆u1(∆ui)
2〉+ 2ν

d

dr
〈(∆ui)2〉+

1

r2

∫ r

0

y2[−2∂3〈u3(∆ui)
2〉 − ∂3〈∆u3(∆ui)

2〉]dy = 4
3
〈ε〉r
(6.5)

or, in dimensionless form,

A∗ + B∗ +NH∗ + LNH∗ = C∗,
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Figure 5. Verification of (6.5), which includes a term relaxing local homogeneity, LNH∗(—–e ):
turbulent transport term A∗ (—–� ), small-scale diffusion term B∗ (–∗–∗–), A+ B (—–4 ), NH∗ + LNH∗
(—–• ). A∗ + B∗ +NH∗ + LNH∗ (�) is to be compared with C∗ (bold solid line).

where the new term LNH expresses the local non-homogeneity. Note that NH and
LNH could also be written as

NH + LNH = − 1

r2

∫ r

0

y2∂3〈(u3 + u+
3 )(∆ui)

2〉dy.

Figure 5 displays all the terms in (6.5). While A∗, B∗ and C∗ are obviously the
same as in (2.23) (illustrated in figure 4), the new term LNH∗ improves the balance
over the RSR. LNH has been computed in similar manner to all the other new terms
which contain an x3-derivative. This derivative acts on moments such as 〈∆u3(∆u1)

2〉
and 〈(∆u3)

3〉, which are zero for very small and very large scales. Thus, the validation
of (2.23) is unaltered for very small and very large scales. The inclusion of the small
local non-homogeneity appears as a supplementary term which is important only in
the RSR. The accuracy with which the new equation is satisfied is about 10% in the
range r & 20η.

Figure 6 shows the ratios of different terms in (6.5). Except for the new term LNH , all
the others are the same as in (2.23). The ratio (A∗+B∗+NH∗+LNH∗)/C∗ is now within
10% of the theoretical value of 1. For smaller scales, isotropy and local homogeneity
should be used more cautiously. Equation (6.5) can be seen as a practical means of
determining 〈ε〉. Let us now suppose that another channel flow is being investigated,
one for which DNS estimates of 〈ε〉 are not available. By measuring u1 and u3 at
different x3 positions around the centreline, one can estimate A,B,NH and LNH in
(6.5). A compensated representation of the sum of these terms, divided by (4/3)r,
should yield a plateau which extends from intermediate to large scales, and presumably
provide a more reliable estimate of 〈ε〉. In such a compensated representation, all the
significant phenomena contributing to the equilibrium of the flow emerge: the small
non-homogeneity of the large scales (NH), the local non-homogeneity and advection
(LNH and A) at intermediate scales and the dissipative effects for the very small scales.
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Figure 6. Ratios of terms in (6.5) and C∗: A∗/C∗ (—–4 ), (A∗ + B∗)/C∗ (–∗–∗–), (NH∗ + LNH∗)/C∗
(—–� ), R ≡ (A∗ + B∗ +NH∗)/C∗ (—–e) and (A∗ + B∗ +NH∗ + LNH∗)/C∗ (—–� ).

Thus, an important practical implication of (6.6) is that a proper estimate of 〈ε〉 is
possible on the centreline of a channel flow, for moderate Reynolds numbers, to an
accuracy of 10%, by measuring two velocity fluctuations and taking account of the
large-scale non-homogeneity as well as including a relaxed form of local homogeneity.

A large-scale balance is not possible for such an equation when the flow is
anisotropic. In this case, the gradient and Laplacian operators involved in (6.4)
cannot assume a simple isotropic form, and, more importantly, relations (2.11) and
(2.12), which reflect the quasi-isotropic properties of NHij(r), will no longer be valid.
In this respect, we have analysed (6.5) away from the channel axis, at x3/h = 0.4,
in similar manner to that already described for the centreline region, i.e. using the
‘true’ 〈ε〉 from DNS data. While the equation is not balanced for the small scales
(〈ε〉iso/〈ε〉 ≈ 0.45), the error is approximately the same as the scale increases. For
this particular location, limr→∞ (A∗ + B∗ +NH∗ + LNH∗) /C∗ ≈ 0.5, simply because,
according to the large-scale limits previously presented, 〈ε〉hom/〈ε〉 ≈ 0.5. This result
reflects the complexity of sheared flows, for which the true 〈ε〉 cannot be estimated
satisfactorily through simple hypotheses.

Another important implication of this study concerns small-scale intermittency. We
have emphasized the role played by the small (large-scale) non-homogeneity when
determining the correct energy budget equation at each scale, implicitly implying
that the scaling range determined solely from 〈(∆u1)

3〉 is probably irrelevant. Thus,
high-order scaling exponents should be determined with caution in slightly non-
homogeneous flows at small to moderate Reynolds numbers.

7. Conclusions
Generalized forms of the Kolmogorov equation have been proposed and verified

on the centreline of a fully developed turbulent channel flow. The new equations
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take into account the small non-homogeneity of the large scales, which acts along
the direction normal to the wall. An interesting aspect of the equations is that they
essentially represent budget equations for the energy at different scales.

Equation (2.13), which is the generalized form of the classical Kolmogorov equation,
is an improvement with respect to the classical four-fifths law. However, there is a
disagreement of about 50% between very small and very large scales, apparently due to
the anisotropy of the flow. This provided the motivation for deriving another extended
version of Kolmogorov’s equation, which includes all the velocity components. This
equation is the analogue of Yaglom’s four-thirds law (Antonia et al. 1997a). Taking
account of the large-scale non-homogeneity results in a significant improvement of
the budget, the disagreement being typically about 10% for very small scales and
5% for very large scales. There remains however a 30% departure over a restricted
scaling range. Local homogeneity was subsequently relaxed by including a small
local non-homogeneity. This represents an extension into the restricted scaling range
of the local non-homogeneity which acts at very large scales. Mathematically, this
hypothesis is equivalent to considering derivatives of the third-order moments with
respect to x3, the non-homogeneous direction. The new equation (6.5) is satisfied to
within 10% for intermediate and very large scales. This equation is the main result
of the paper. An important application of this equation is that it provides a means
of experimentally determining the mean energy dissipation rate on the centreline of
a fully developed turbulent channel flow.

R. A. A. acknowledges the support of the Australian Research Council. L. D. is
most grateful to Professor M. Coantic for useful discussions.

Appendix A. Justification of relations (2.11) and (2.12)
Here, the tensor NHij(r), given by relation (2.10), is shown to exhibit similar

mathematical properties to those of an isotropic second-order tensor. Generally, these
kinds of tensors feature in second-order structure functions. For simplicity and to
follow as closely as possible the analysis in MY, we consider the correlation tensors
which correspond to these structure functions. We define

BNHij(r) ≡ ∂3〈u3uiu
+
j 〉(r), (A 1)

which is similar to definition (12.26) in MY for the correlation tensor Bij(r). Starting
from the premise that Bij(r) is isotropic, we shall further demonstrate that BNHij(r)
also presents some quasi-isotropic properties. The same tensorial analysis (developed
in an isotropic context) as in MY (pp. 38, 39) will be adapted to our non-homogeneous
tensor BNHij(r). We first project these tensors onto a special set of coordinates
(x′1, x′2, x′3), the axis x′1 being along the vector r. The magnitudes of the components
of the tensors Bij(r) and BNHij(r) in this new coordinate system will be denoted by
B′ij(r) and BNH ′ij(r); note the dependence is on r only.

The tensor BNH ′ij(r) can be expressed (Appendix B) in the form

BNH ′ij(r) ≡ L
(
∂

∂x′k
〈u′ku′iu′+j 〉

)
(r), (A 2)

to relatively good accuracy, with summation applying when k is repeated.L is a linear
combination of terms with the form specified within the brackets. According to (A 2),
the form of the second-order tensor, BNH ′ij(r), involves, in the new reference system,
only terms containing velocity components u′k , and derivatives with respect to x′k . This
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is important for the next step in our approach. It can now be readily appreciated
that any change associated with x′k will affect the sign of BNH ′ij(r) only via x′i and x′j ,
as for the classical isotropic tensor B′ij(r) (cf. MY). A rotation of π about the axis x′1
results in the reversal of the directions x′2 and x′3, so that B′12(r) = −B′12(r) = 0. For
the same transformation, we now examine the tensor BNH ′12(r), written using the form
(A 2). For every k = 1, 2, 3, due to the fact that the orientation of the axis x′k appears
twice (first, because of the derivative, secondly, because of the velocity component
uk), BNH

′
12(r) will exhibit the same symmetry as B′12(r). It follows that

BNH ′12(r) = −BNH ′12(r) = 0.

Similarly, it can be shown that

BNH ′13(r) = BNH ′21(r) = BNH ′31(r) = 0. (A 3)

Rotation about any axis leads to interchanging the other two axes, whereas reflection
in a plane, for example (x′1, x′2), results in replacing x′3 by −x′3. Despite this change in
sign, the term ∂x′3〈u′3u′iu′j〉(r) will retain the same properties as 〈u′iu′j〉(r), i.e.

BNH ′23(r) = BNH ′32(r) = 0, BNH ′22(r) = BNH ′33(r). (A 4)

As a first conclusion, all the symmetry properties of the tensor BNH ′ij(r) are identical to
those of the isotropic tensor B′ij(r). Consequently, the tensors Bij(r) and BNHij(r) will
also have similar properties and may be written using only two non-equal components
(longitudinal and normal) as in relation (12.27) of MY. For the tensor BNHij(r), these
two distinct components are

BNH ′11(r) = BNHLL(r) = ∂3〈u3u
′
1u
′+
1 〉(r),

BNH ′33(r) = BNHNN(r) = ∂3〈u3u
′
3u
′+
3 〉(r).

}
(A 5)

Note that, the derivative ∂3 and the velocity component u3 in the above relations are,
for simplicity, kept in the basic reference system, instead of using ∂/∂x′k and u′k .

The second-order tensor BNHij(r) is written using (A 5) as

BNHij(r) =
[
BNH ′11(r)− BNH ′33(r)

] rirj
r2

+ BNH ′33(r)δij , (A 6)

while incompressibility leads to

BNH ′33(r) = BNH ′11(r) +
r

2

d

dr
BNH ′11(r), (A 7)

which is similar to relation (12.67) of MY. The function BNHij(r) has therefore similar
properties to Bij(r).

For the above reasons, structure functions Dij(r) and NHij(r) have similar properties,
i.e. they can be expressed in terms of the longitudinal structure functions (depending
only on separations along any spatial direction, e.g. x1) via similar relations, e.g.

D33(r) = D11(r) +
r

2

d

dr
D11(r), (A 8)

and

NH33(r) = NH11(r) +
r

2

d

dr
NH11(r). (A 9)
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Appendix B. Justification of relation (A 2)
By taking into account the slight non-homogeneity along x3, and the homogeneity

(equation (2.9)) along both x1 and x2, we can examine the properties of the flow,
about the non-homogeneous (x3) direction. The planes (x1, x3) and (x2, x3) are from
this point of view equivalent, since any rotation about the x3-axis should lead to a
new reference system (x′1, x′2, x3), with properties

∂′1〈 〉 = ∂′2〈 〉 ≡ 0, ∂3〈 〉 6= 0,

identical to those of the reference system (x1, x2, x3), cf. relations (2.9).
It is therefore sufficient to consider what happens when the separation vector r

is in the (x1, x3)-plane. Suppose the angle between r and the axis x1 is θ ∈ [0, π/2].
Because of symmetry, these limits are sufficient. We then rotate the axes x1 and x3

through an angle θ so as to obtain the new reference system (x′1, x′3), with one axis
along r. We have

x′1 = x1 cos θ + x3 sin θ, x′3 = −x1 sin θ + x3 cos θ. (B 1)

Inversely,

x1 = x′1 cos θ − x′3 sin θ, x3 = x′1 sin θ + x′3 cos θ. (B 2)

The tensor BNHij(r) may be expressed, see (A 1), as a function of terms like
〈(∂3u3)uiu

+
j 〉, 〈u3(∂3ui)u

+
j 〉, etc. We now turn our attention to the first term, since

all the others can be treated in a similar manner. By switching to the new reference
system, we have

∂3u3 =

[
∂

∂x′1
sin θ +

∂

∂x′3
cos θ

]
[u′1 sin θ + u′3 cos θ]

=
∂u′1
∂x′1

sin2 θ +

[
∂u′3
∂x′1

+
∂u′1
∂x′3

]
cos θ sin θ +

∂u′3
∂x′3

cos2 θ. (B 3)

The first and third terms on the second line of (B 3) lead, after multiplying with any
combination uiu

+
j , to terms possessing the form indicated in (A 2). We now enquire

into the ‘cross’ term, i.e. the second term on the second line of (B 3). The aim is to
show that this term is zero, to relatively good accuracy. This term contains a product
cos θ sin θ, so it is maximum when θ = π/4. After rotating the original reference

system through π/4, cos θ = sin θ =
√

2/2, we consider any combination between a
‘cross’ term (∂u′1/∂x′3) and any other pair of velocity components, e.g. 〈(∂u′1/∂x′3)u′1u′+3 〉,
in the basic reference system. Since relations (2.9) apply only for this system, we have,
after using (B 1) and (B 2),〈

∂u′1
∂x′3

u′1u
′+
3

〉
= 1

4

〈
[−∂1 + ∂3] (u1 + u3)(u1 + u3)

[−u+
1 + u+

3

]〉
= 1

4

〈
[−∂1u1 − ∂1u3 + ∂3u1 + ∂3u3] (u1 + u3)(−u+

1 + u+
3 )
〉
. (B 4)

After rearranging the terms, recalling that u+
i depends only on x+, and not on x,

and using relations (2.9), we obtain〈
∂u′1
∂x′3

u′1u
′+
3

〉
= 1

8
∂3〈(u1 + u3)

2(u+
3 − u+

1 )〉 = 0, (B 5)

since 〈(u1 + u3)
2(u+

3 − u+
1 )〉 is zero by homogeneity and local isotropy. This result
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was verified experimentally, and we have obtained that, for the smallest scale, 〈(u1 +
u3)

2(u+
3 − u+

1 )〉(3η) = 0.3〈(u1 + u3)
2u+

1 〉(3η), while, for all other scales, these two-point
correlations are zero.

Similarly, it can be shown (we do not reproduct the calculations here, but the
approach is as outlined above) that〈

∂u′3
∂x′1

u′3u
′+
1

〉
= 1

8
∂3〈(u1 − u3)

2(u+
1 + u+

3 )〉 ≡ 0. (B 6)

Other combinations are negligible, since, by local isotropy and relations (2.9)〈
∂u′3
∂x′1

u′1u
′+
3

〉
=

〈
∂u′3
∂x′1

u′3u
′+
1

〉
= 0.

The first equality was verified experimentally, and the second corresponds to relation
(B 6). Further, 〈

∂u′1
∂x′3

u′3u
+′
1

〉
≈
〈
∂u′1
∂x′3

u′1u
+′
3

〉
= 0,

where the first part of this approximation is verified by experiment, and the second
corresponds to relation (B 5). All other combinations, containing an odd number of
the same axis index, are zero by local isotropy. For example, 〈(∂u′3/∂x′1)u′1u+′

1 〉 = 0,
since, by changing x′3 to −x′3 , and keeping x′1 unchanged (i.e. by rotating through
π in a plane perpendicular to x′1), this term changes sign once, so it is zero by local
isotropy. Further, any cross-combination involving one u′2 component will also be
zero. For example, 〈(∂u′3/∂x′1)u′1u+′

2 〉 is zero, since a rotation of π about x′3 transforms
x′1 to −x′1 and x′2 to −x′2, so that the term changes sign once and must be zero by
local isotropy. Relation (A 2) therefore applies on the channel centreline.
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